

Why is the following concurrent system correct?

User program

```
while (true) {
    int n = *counter_ptr;
    while (*flag_ptr != 0) {}
    // Beginning of exclusive access
    *data_ptr = n;
    // End of exclusive access
    *flag_ptr = 1;
    *counter_ptr = n + 1;
}
```

Model of Network Card

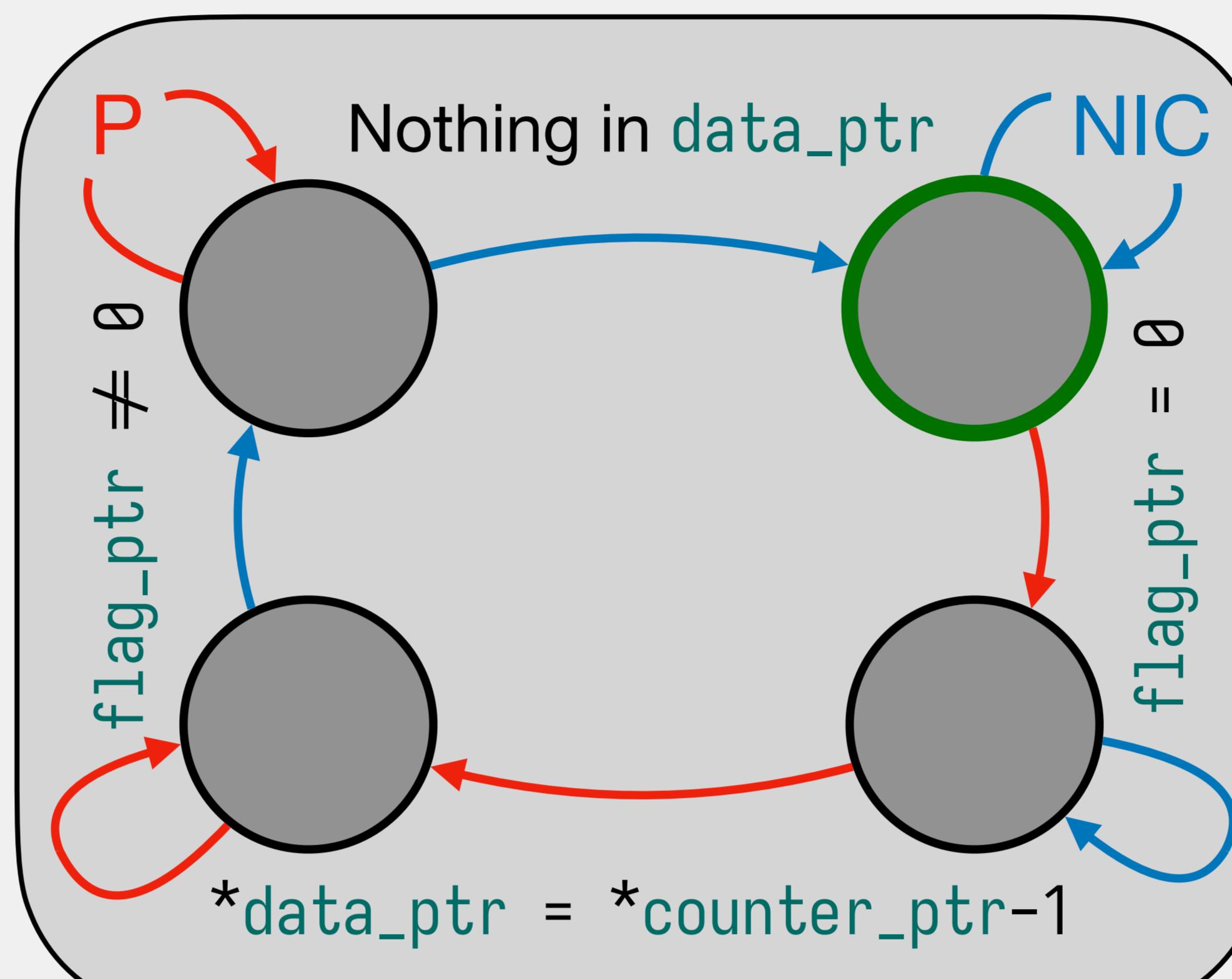
```
while (true) {
    while (*flag_ptr == 0) {}
    // Beginning of exclusive access
    int n = *data_ptr;
    // End of exclusive access
    *flag_ptr = 0;
    EMIT(n);
}
```

Initial memory state: $*\text{counter_ptr} = 0, *\text{flag_ptr} = 0$

Spec: The network card (NIC) EMITS the numbers 0,1,2,...

Typical paper proof:

"It is obvious that the two programs only race on `flag_ptr`. So, the system can be reduced to the following:"



Naïve Machine Check Proof:

We consider all interleavings. The resulting invariant of the system is the following:

Observation Machine checked concurrency proofs are more complex than paper ones.

Dynamic-ownership annotations enable simple concurrent-program proofs through optimistic symbolic execution

Dynamic-ownership annotations

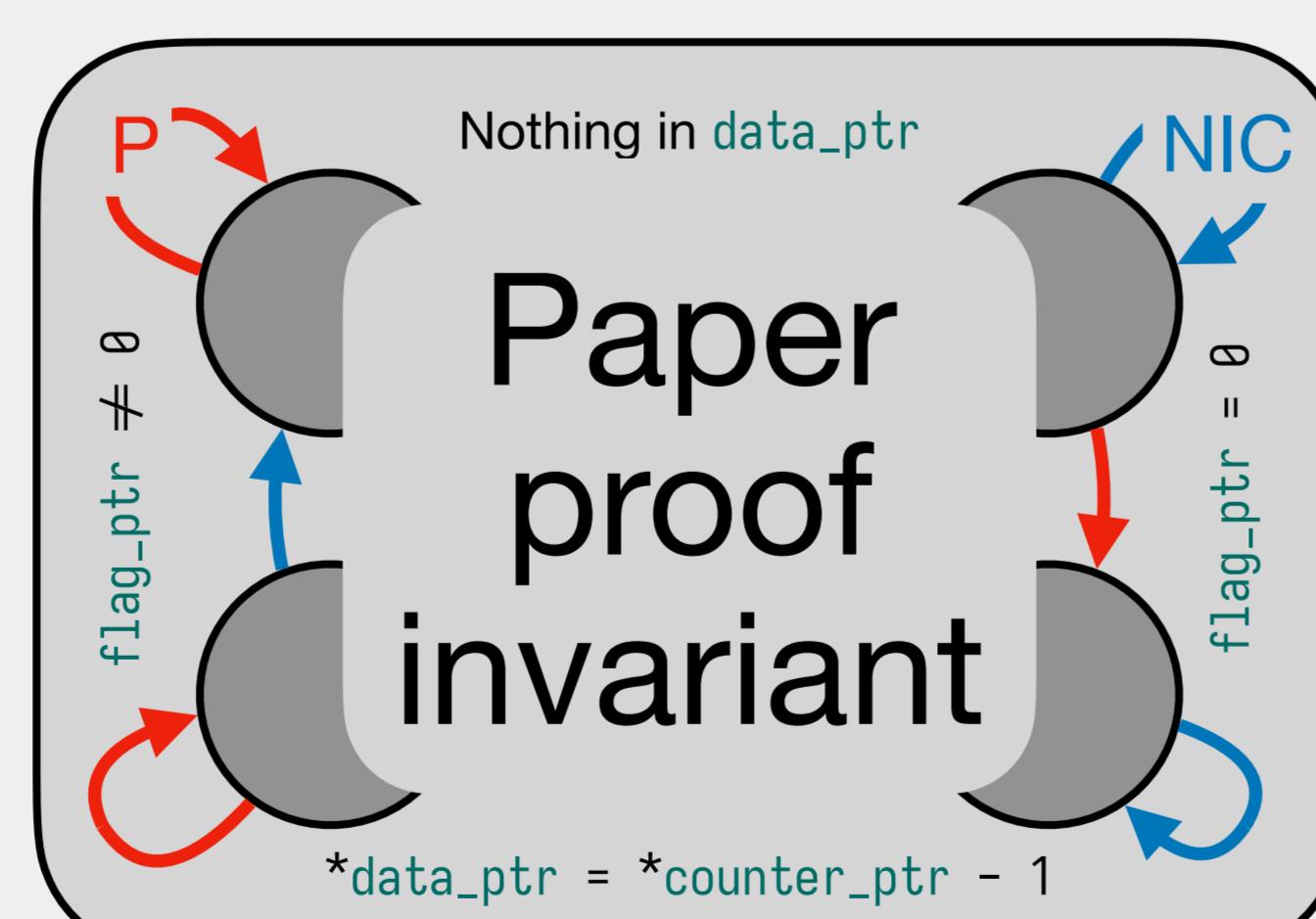
Our paper proof relies on the insight that all accesses to `data_ptr` and `counter_ptr` are race-free.

```
TAKE(data_ptr);
int n = *data_ptr;
UNTAKEN(data_ptr);
```

⇒ We have added ownership annotations to our language to encode those insights in the code: `TAKE(data_ptr)` `UNTAKEN(data_ptr)`

Simple concurrent-program proofs

Using dynamic-ownership annotations and optimistic symbolic execution, we only need to reason about the interleaving of accesses to `flag_ptr`. We can thus reuse the *paper proof invariant* which has 4 states instead of 152!



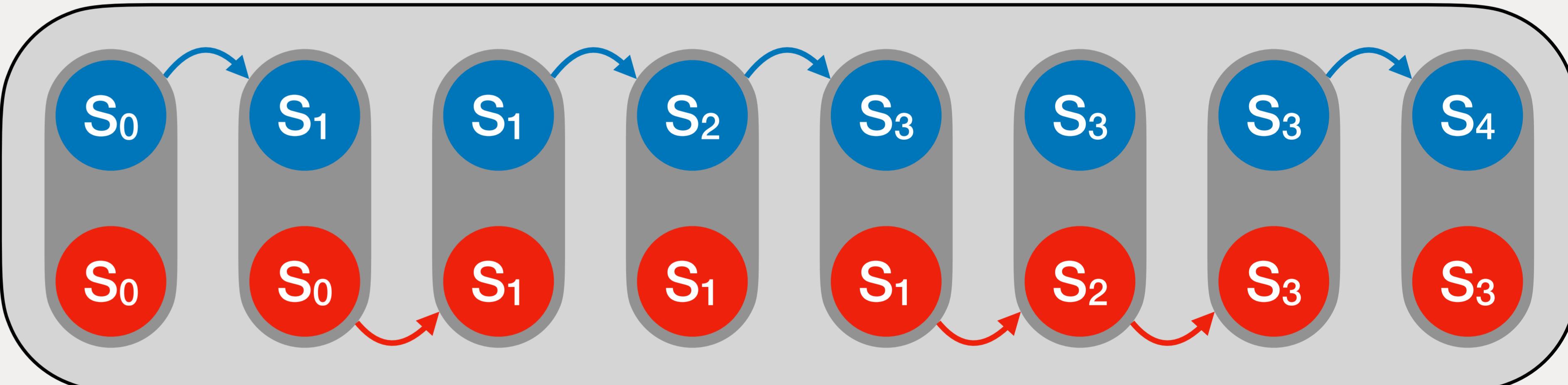
Annotation-correctness side conditions

Proved once and for all

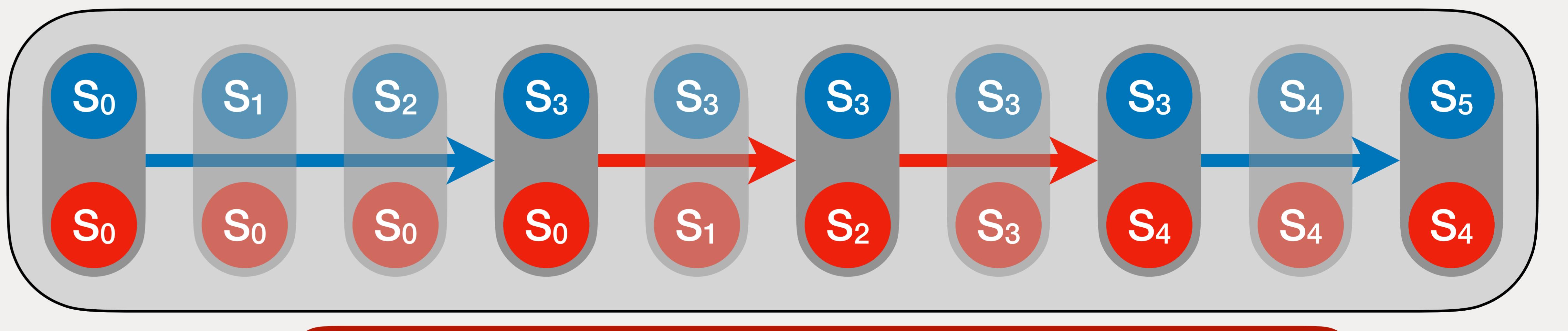
Optimistic symbolic execution

Using the *dynamic-ownership annotations*, we optimistically execute programs until they access a global memory location or terminate. This generates side conditions to verify the annotations.

Naïve symbolic execution:



Execution with our optimistic symbolic executer:



+ Annotation-correctness side conditions

Results and future work

We have proved correctness of systems that use locks implemented using *Compare-and-Swap* or *Peterson's algorithm* using the same invariant as the paper proofs. We plan to add modularity reasoning using *contextual-refinement* and automatic invariant generation.

```
(* key user provided proofs! *)
Lemma I_is_invariant: ∀ (s1 s2: state) (t1 t2: trace),
  I s1 t1 → run_OSE s1 s2 t2 → I s2 (t1 ++ t2).
  :
  inversion 1;
  (* 4 cases, one for each state of the invariant *)
  run_optimistic_symbex;
  (* 8 cases, one for each transition *)
  eauto.

Lemma annotations_correct: ∀ s t,
  I s t → state_ok s.
  :
  inversion 1; eauto using set_solver.

Theorem goal: ∀ s t, run s t → P t.
  :
  eauto using I_implies_P, optimistic_symbex_sound,
  I_is_invariant, annotations_correct.
```