
Using the dynamic-ownership annotations, we optimistically execute 
programs until they access a global memory location or terminate. This 
generates side conditions to verify the annotations. 
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                          Machine

checked concurrency 
proofs are more complex 
than paper ones.

Why is the following concurrent system correct?

while (true) { 
  int n = *counter_ptr; 
  while (!flag_ptr "# 0) {} 
  $% Begining of exclusive access 
  *data_ptr = n; 
  $% End of exclusive access 
  *flag_ptr = 1; 
  *counter_ptr = n + 1; 
}

while (true) { 
  while (!flag_ptr &' 0) {} 
  $% Begining of exclusive access 
  int n = *data_ptr; 
  $% End of exclusive access 
  *flag_ptr = 0; 
  EMIT(n); 
} 

Spec: The network card (NIC) EMITs the numbers 0,1,2,…

User program Model of Network Card Naïve Machine Check Proof: 
We consider all interleavings. The resulting invariant 
of the system is the following:

152 cases !!

Observation Dynamic-ownership annotations enable 
simple concurrent-program proofs through 

optimistic symbolic execution

Our paper proof relies on the insight that all accesses 

to data_ptr and counter_ptr are race-free.


 We have added ownership annotations to our language to encode 
those insights in the code:    TAKE(data_ptr)    UNTAKE(data_ptr)
⟹

Dynamic-ownership annotations

Using dynamic-ownership annotations and optimistic symbolic 
execution, we only need to reason about the interleaving of accesses 
to flag_ptr. We can thus reuse the paper proof invariant which has 4 
states instead of 152!

Simple concurrent-program proofs

Optimistic symbolic execution

Naïve symbolic 
execution:

Execution with our optimistic symbolic executer:

We have proved correctness of systems that use locks implemented 
using Compare-and-Swap or Peterson’s algorithm using the same 
invariant as the paper proofs. We plan to add modularity reasoning 
using contextual-refinement and automatic invariant generation.

Results and future work

Typical paper proof:  
 "It is obvious that the two programs

  only race on flag_ptr. So, the system

  can be reduced to the following:"
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+ Annotation-correctness side conditions 

(! key user provided proofs! !) 
Lemma I_is_invariant: ∀ (s1 s2: state) (t1 t2: trace), 
  I s1 t1 #$ run_OSE s1 s2 t2 #$ I s2 (t1 %& t2). 
∵ 
  inversion 1; 
  (! 4 cases, one for each state of the invariant !) 
  run_optimistic_symbex; 
  (! 8 cases, one for each transition !) 
  eauto. 
■ 

Lemma annotations_correct: ∀ s t,  
  I s t #$ state_ok s. 
∵ inversion 1; eauto using set_solver. ■ 

Theorem goal: ∀ s t, run s0 s t #$ P t. 
∵ eauto using I_implies_P, optimistic_symbex_sound, 
    I_is_invariant, annotations_correct. ■

Nothing in data_ptr

*data_ptr = *counter_ptr - 1
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TAKE(data_ptr); 
int n = *data_ptr; 
UNTAKE(data_ptr);

Proved once 
and for all

Initial memory state: *counter_ptr = 0, *flag_ptr = 0


