
Using the dynamic-ownership annotations, we optimistically execute
programs until they access a global memory location or terminate. This
generates side conditions to verify the annotations.

S0

S0

S3

S0

S3

S2

S5

S4

S3

S4

S3

S3

S3

S1

S2

S0

S1

S0

S4

S4

Interactive symbolic execution of concurrent programs in a theorem prover
Alexandre Pinazza, EPFL, Switzerland

Supervised by Clément Pit-Claudel and Thomas Bourgeat

 Machine

checked concurrency
proofs are more complex
than paper ones.

Why is the following concurrent system correct?

while (true) {
 int n = *counter_ptr;
 while (!flag_ptr "# 0) {}
 $% Begining of exclusive access
 *data_ptr = n;
 $% End of exclusive access
 *flag_ptr = 1;
 *counter_ptr = n + 1;
}

while (true) {
 while (!flag_ptr &' 0) {}
 $% Begining of exclusive access
 int n = *data_ptr;
 $% End of exclusive access
 *flag_ptr = 0;
 EMIT(n);
}

Spec: The network card (NIC) EMITs the numbers 0,1,2,…

User program Model of Network Card Naïve Machine Check Proof:
We consider all interleavings. The resulting invariant
of the system is the following:

152 cases !!

Observation Dynamic-ownership annotations enable
simple concurrent-program proofs through

optimistic symbolic execution

Our paper proof relies on the insight that all accesses

to data_ptr and counter_ptr are race-free.

 We have added ownership annotations to our language to encode
those insights in the code: TAKE(data_ptr) UNTAKE(data_ptr)
⟹

Dynamic-ownership annotations

Using dynamic-ownership annotations and optimistic symbolic
execution, we only need to reason about the interleaving of accesses
to flag_ptr. We can thus reuse the paper proof invariant which has 4
states instead of 152!

Simple concurrent-program proofs

Optimistic symbolic execution

Naïve symbolic
execution:

Execution with our optimistic symbolic executer:

We have proved correctness of systems that use locks implemented
using Compare-and-Swap or Peterson’s algorithm using the same
invariant as the paper proofs. We plan to add modularity reasoning
using contextual-refinement and automatic invariant generation.

Results and future work

Typical paper proof:
 "It is obvious that the two programs

 only race on flag_ptr. So, the system

 can be reduced to the following:"

S0

S0

S1

S0

S1

S1

S2

S1

S3

S1

S3

S2

S3

S3

S4

S3

+ Annotation-correctness side conditions

(! key user provided proofs! !)
Lemma I_is_invariant: ∀ (s1 s2: state) (t1 t2: trace),
 I s1 t1 #$ run_OSE s1 s2 t2 #$ I s2 (t1 %& t2).
∵
 inversion 1;
 (! 4 cases, one for each state of the invariant !)
 run_optimistic_symbex;
 (! 8 cases, one for each transition !)
 eauto.
■

Lemma annotations_correct: ∀ s t,
 I s t #$ state_ok s.
∵ inversion 1; eauto using set_solver. ■

Theorem goal: ∀ s t, run s0 s t #$ P t.
∵ eauto using I_implies_P, optimistic_symbex_sound,
 I_is_invariant, annotations_correct. ■

Nothing in data_ptr

*data_ptr = *counter_ptr - 1

fl
ag
_p
tr
)
*
0

fl
ag
_p
tr
 =
 0

P NIC

Paper
proof

invariant

Annotation-
correctness side

conditions

Nothing in data_ptr

*data_ptr = *counter_ptr-1

fl
ag
_p
tr
)
*
0

fl
ag
_p
tr
 =
 0

NICP

TAKE(data_ptr);
int n = *data_ptr;
UNTAKE(data_ptr);

Proved once
and for all

Initial memory state: *counter_ptr = 0, *flag_ptr = 0

