
Testing / Verification Tool (e.g. KLEE)

Instrumentation can help pinpoint reasoning
steps that give the solver trouble

Insight: verifier developers often know whether an exploding
query is satisfiable or unsatisfiable, and why it is so.

Idea: instrument the solver to bridge the gap between expected
reasoning (deductive steps) and actual behavior.

Towards Performance Interfaces
for SMT Solvers

In order to combat solver explosion, we need
abstractions that describe solver performance.

 SMT solvers are black boxes with unstable performance

We propose a practical gray box to clarify relevant performance characteristics iteratively

George
Candea

Can
Cebeci

DSLab

Clément
Pit-Claudel

• Program verifiers rely on
SMT solvers for automation

• Solver explosion = timeouts on seemingly
easy queries depending on user-transparent
factors (e.g., reordering assertions, renaming
variables, arithmetic rewrites)

• Outcome: more annotations, less automation

; Can a+100 point to array element b given that
; a has size 200 and is allocated below b?
(assume b = arr + <elem_sz> * i)
(assume a + 200 <= b)
(prove a + 100 < b)

Verifier developers need to stabilize SMT performance over the set of queries
generated by their tool, but they lack the tools to do so.

Key Insights:

• SMT solvers are generic but
unstable; domain-specific
solvers are stable but hard to
build (e.g. integer programming)

• Verifiers use SMT solvers in
domain-specific ways

• Most of the time, SMT solvers do
what is expected

• When they don’t, it is hard to
pinpoint why and take action

• Often, explosions can be fixed by
changing solver parameters, or
by slightly changing how SMT
queries are constructed

SMT solver

Parameters

EncodingCondition

SMT
query

SAT /
UNSAT

Tune

Customize

Parameter fuzzing can automatically find concise configurations
that fix solver explosion and help pinpoint the root cause

• 5 queries generated by Dafny (Mariposa benchmark) solved in less than a
seconds with 1-3 parameters. Default solver configuration times out after
100 seconds.

• 5 queries generated by a KLEE-based tool fixed with a single parameter

• Parameters that avoid explosion also speed up non-exploding queries

Impact of using rewriter.sort_disjunctions=false with Dafny queries

Performance interface=ideal white box

def z3_unstable(query, config):
"""
Input: an SMT query, a solver configuration
Return true if the query would explode, false otherwise.
"""

 if query.logic == QF_LIA:
 # Linear integer arithmetic is stable.
 return False
 # . . .
 if query.logic == QF_AUFBV:
 num_bits_compared = 0
 for a in query.assertions:
 if a.is_bitvec_comparison():
 num_bits_compared += a.rhs.len() + a.lhs.len()
 if num_bits_compared > 120 and \
 not config.incremental_solving:
 # Too many bitvector comparisons
 # leads to explosion in some configs.
 return True
 if a.is_select() and a.child(0).is_store():
 # If the solution depends on a RAW simplification
 # and relevancy is enabled, Z3 will explode.
 if a.simplify() in solution(query):
 if config.relevancy > 0:
 return True
 # . . .

Open questions: succinctness, readability, actionability

Mariposa
benchmark

set
Queries

Timeouts
(at 20 seconds) Avg. time (seconds)

Default Fuzzed Default Fuzzed

stable-ext 280 59 39 4.91 4.42

unstable-ext 378 179 107 4.44 4.45

Refine
Performance
Interface

Insights about solver instability should
be made explicit in an interface

• The interface guides encoding choices
(e.g., explicitly perform RAW simplifications)

• The interface informs parameter tuning in
response to future explosions

• Automated tools can use the interface to
identify subtle issues with the encoding

def z3_unstable(query, config):
 for a in query.assertions:
 if a.is_select() and a.child(0).is_store():
 # If the solution depends on a RAW simplification
 # and relevancy is enabled, Z3 will explode.
 if a.simplify() in solution(query):
 if config.relevancy > 0:
 return True
 return False

def z3_unstable(query, config):
 return False Pinpoint root cause,

refine interface

a1: (assert array[i] == 0)
a2: (assert j < i || i < j)
a3: (assert (array[j:=v])[i] != 0)
...

SMT
solver

d1: (deduce i != j from a2)
d2: (deduce array[j=v][i] == array[i]

from d1)
d3: (deduce array[j=v][i] == 0

from a1, d2)
d4: (conflict d3, a3)

no case splits
d1: (deduce i != j from a2)
10000 splits, at depth 100
d2: (deduce array[j=v][i] == array[i]

from d1)
timeout
d3: (deduce array[j=v][i] == 0

from a1, d2)
d4: (conflict d3, a3)

SMT
query

SMT
query

struct hyp_page *node_to_page(struct list_head *node)
/*@ accesses __hyp_vmemmap; hyp_physvirt_offset @*/
/*@ requires let phys=((integer)node)+hyp_physvirt_offset@*/
/*@ requires phys < power(2, 64) @*/
 . . .
/*@ ensures return == page @*/
/*@ ensures {__hyp_vmemmap} unchanged; {hyp_physvirt_offset}
unchanged @*/
{ return hyp_virt_to_page(node); }

Pulte et al., POPL ‘23

