
Verifying the Functional Correctness of Braun
Trees with LiquidHaskell

Felipe de León1, Alberto Pardo1, and Marcos Viera1

Instituto de Computación
Universidad de la República Montevideo Uruguay

Abstract. LiquidHaskell is a refinement type system that allows inte-
gration of formal verification to software development in the form of type
annotations over Haskell data structures and functions. In this paper,
we explore the capabilities of the tool by focusing on balanced trees, and
more specifically on Braun trees, a commonly used structure for rep-
resenting functional arrays. We formalize some properties of balanced
trees, concerning the relationship between their height and number of
nodes. On top of this properties, we verify the invariants of functional
and flexible arrays, resulting in an implementation that encodes most of
the pre-conditions and post-conditions that preserve such invariants.

Keywords: LiquidHaskell, Verification, BraunTrees, Functional Arrays

1 Introduction

Formal verification has long promised increased software reliability, but its in-
tegration into mainstream programming practices remains limited due to com-
plexity, verbosity, and steep learning curves. Since its introduction, LiquidHaskell
(LH) [14] has been advertised as a lightweight approach to integrate formal ver-
ification into Haskell, offering a balance between expressiveness, low verbosity,
and practical performance.

The aim of this work is to experiment with the main formalization and verifi-
cation features of LH, applying them to a non-trivial example. In this sense, we
focus on the formalization of functional arrays by means of their implementation
in terms of Braun trees [3], a class of balanced binary trees with a well-defined
structural property and efficient indexing operations. Due to their regular shape,
Braun trees serve as an excellent benchmark to test the formal verification ca-
pabilities of LH. Braun trees are an interesting use case, since they are simple
enough to admit elegant specifications, yet rich enough to expose the limits and
power of current verification tools.

Our development is strongly guided by the work of Nipkow and Sewell [7],
who present a comprehensive formalization of Braun trees in Isabelle/HOL. We
replicate their verification effort, adapting the invariant definitions and their
verification to the realm of LH.

In summary, we make the following contributions: (i) we formalize balanced
binary trees in LH and prove some of their logarithmic properties; (ii) we formal-
ize functional and flexible arrays implemented using Braun trees; and (iii) we use

2 F. de León et al.

Braun trees as a use case to explore recent LH features for theorem proving and
refinement type reasoning, comparing them with those of other theorem provers.

The rest of the paper is organized as follows. In Section 2 we briefly describe
the main features of LH. Then, in Section 3, we prove some logarithmic proper-
ties that balanced binary trees satisfy. On top of these properties, in Section 4,
we prove the balance property of Braun trees and verify a series of invariants
for operations on functional arrays. In Section 4.3 we verify flexible arrays, im-
plemented in terms of Braun trees. Finally, we discuss related work in Section 5
and present some conclusions in Section 6.

The complete implementation, including all definitions, operations, and mech-
anized proofs, is available at https://gitlab.fing.edu.uy/felipe.de.leon/
brauntrees.

2 LiquidHaskell

LH [4] is a refinement type system that allows the specification of invariants in the
form of type annotations over Haskell type definitions and function types. Those
invariants are given by logical predicates that can be regarded as Haskell Boolean
expressions which can be verified by an SMT solver. For example, we can define
a safe division operation by declaring a pre-condition that restricts the divisor
to be non-zero:
{-@ safe_div :: Int -> d : { Int | d != 0 } -> Int @-}
safe_div :: Int -> Int -> Int
safe_div x y = div x y

By annotating the non-zero condition in the type of the second argument,
we ensure that, when compiled, LH checks that in our code there is no case
where safe_div is called with zero as divisor. If a function is invoked with an
argument that is incompatible with its specification (e.g., a divisor that may be
zero), LiquidHaskell reports the program as unsafe. In this case, the SMT solver
identifies a counterexample to the specification, and compilation fails with an
error message.

2.1 Promoting Functions

LH does not directly interpret Haskell functions within its refinement logic; func-
tions are treated as black boxes. In order to reason about their behaviour, one
can promote them to refinement logic using specific directives provided by LH.

Inline. The inline directive allows the promotion of non-recursive functions
whose body is composed by other already-promoted functions. It is mostly used
to promote simple predicates. An example is the following function that checks
for non-zero values:
{-@ inline notZero @-}
notZero :: Int -> Bool
notZero x = x != 0

Once promoted, we can call these function inside refinements. For example,
we can rewrite the signature of safe_div as:
{-@ safe_div :: Int -> d : { Int | notZero d } -> Int @-}

https://gitlab.fing.edu.uy/felipe.de.leon/brauntrees
https://gitlab.fing.edu.uy/felipe.de.leon/brauntrees

Verifying the Functional Correctness of Braun Trees with LiquidHaskell 3

Measure. Functions promoted with the measure [13] directive must be struc-
turally recursive on a decreasing argument and accept only a single parameter.
In this case LH internally generates a refinement type where the promoted func-
tion definition is attached to the data constructor of the type of the parameter.
If multiple measures are defined, they are merged into a single constructor.

For instance, we can define a function allEven, to check if all the elements of
a list of integers are even, and promote it using measure:
{-@ measure allEven @-}
allEven :: [Int] -> Bool
allEven [] = True
allEven (x:xs) = even x && allEven xs

Having this function promoted, we can now use it to define e.g. the domain of
lists of even numbers:
{-@ lstEvens :: xs : { [Int] | allEven xs } @-}
lstEvens = [2,4,6,8]

LH will verify that the list lstEvens indeed contains only even numbers.
The type directive can be used to define a named refinement type, allowing

reusable and more readable specifications. Thus, if we define:
{-@ type EvenList = { xs : [Int] | allEven xs } @-}

the annotation for lstEvens can be simplified to:
{-@ lstEvens :: EvenList @ -}

Reflection The reflect directive comes with slightly fewer limitations than
the previous two. When a function is promoted with reflect, LH introduces an
uninterpreted version of it in the refinement logic and embeds its body for use in
logical reasoning. Once reflected, a function can be unfolded in logic formulas,
allowing it to participate in more expressive proofs and theorem statements.

Unlike measures, reflected functions can have multiple parameters and can
call other reflected functions but their will be require to terminate. Also different
from measures, reflected functions do not bind values to constructors, but add
constraints to the result of the functions. For this reason, if we try to promote
allEven using reflection, then LH is unable to check that a given list contains
only even numbers unless that is explicitly verified elsewhere.

Reflected functions on their own are less powerful than measures. However,
Vazou [11] developed a library of proof combinators, which allow the use of
LH as a theorem prover. The library includes the following combinators: Proof,
an alias for the unit type () indicating we are proving a theorem; QED, declares
that a proof is ready; (***), marks the end of a proof before QED; (===), equality
between expressions in an equational proof; ?, the “because” operator, used to
justify steps in proofs; and &&&, an AND operator that allows the combination
of subproofs, e.g. when proofs are divided into cases.

For instance, using some of these combinators we can write a proof stating
that a list contains only even elements:
{-@ lstEvens_prf :: {allEven [2,4,6,8] == True} @-}
lstEvens_prf :: Proof
lstEvens_prf = allEven [2,4,6,8]

=== (even 2 && allEven [4,6,8])

4 F. de León et al.

=== (even 4 && allEven [6 ,8])
=== (even 6 && allEven [8])
=== (even 8 && allEven []) *** QED

Every time it is applied to an even number, even returns True. Since we are
using the Boolean && operator, we can eliminate the intermediate True values in
the proof, allowing us to simplify step by step until we reach the final result. The
rest of the combinators will be used later, when we show more complex proofs.

PLE. Proof by Logical Evaluation (PLE) [11,12] is a feature of LH that
adds the following steps during type checking: (i) transforms every function into
its reflected form; (ii) unfolds the reflected functions; and (iii) repeats until a
fixpoint is reached.

When PLE is enabled, the earlier allEven example can be automatically
verified without having to write the proof for lstEvens_prf; i.e., we can either
define lstEvens as in the measure example or define lstEvens_prf just as ().

As we will see later, while PLE is very effective for simple equational rea-
soning and inductive properties, it cannot always handle complex recursion,
higher-order functions, or proofs that require more sophisticated case analysis
or user guidance.

3 Balanced Binary Trees

Balanced trees are a very common structure to formalize, as their structural
constraints make them a good case study for verification tools. Previous work
in LH regarding balanced trees focuses on two subtypes of balanced trees AVL
trees [10] and red-black trees [14]. In contrast, in this work we adopt a more gen-
eral notion of balance and study the logarithmic properties that these structures
satisfy.

The representation of balanced binary trees in LH starts with the definition
of (parameterized) binary trees:
data Tree a = Node a (Tree a) (Tree a) | Nil

Following [7], we say that a tree is balanced if the absolute difference between
its maximum and minimum height is at most 1.This definition is more general
than the balance criteria used in AVL or red-black trees.
{-@ measure balanced @-}
{-@ balanced :: Tree a -> Bool @-}
balanced Nil = True
balanced t@(Node _ l r) = balanced l && balanced r &&

h t - mh t <= 1

Functions h and mh denote the maximum and minimum heights of the tree,
respectively, i.e. the lengths of the longest and shortest paths from the root to
a leaf. Since mh is always less than or equal to h, we encode this invariant in the
function’s return type. LH is able to prove it automatically. This allows us to
directly write h t - mh t <= 1, knowing that the value will always be between
0 and 1 (and never negative). We only show the signatures and annotations of h
and mh, their definitions are straightforward.
{-@ measure h @-}
{-@ h :: t: Tree a -> i : { Nat | i >= mh t } @-}

Verifying the Functional Correctness of Braun Trees with LiquidHaskell 5

h :: Tree a -> Int

{-@ measure mh @-}
{-@ mh :: t : Tree a -> i : { Nat | i <= h t } @-}
mh :: Tree a -> Int

We deliberately promote this function using measure, as we want the balance
information to be embedded directly in the constructor of the tree. By promoting
in such way, we strengthen the type system, allowing us to perform more granular
pattern matching and, obtaining more precise information about the structure
we are working with. If we had used reflect instead, the effectiveness would
depend on how far the solver is able to unfold the definitions. In this case, we
find that measure is more powerful than reflect when defining properties over
data types.

Although the condition h t - mh t <= 1 is sufficient to consider a tree bal-
anced, we also explicitly require that the left and right subtrees are balanced.
The addition of this extra condition on the subtrees is useful in future proofs to
avoid repeatedly establishing that subtrees meet the balance condition.

Finally, we define the BTree structure, which consists of those trees that
satisfy the definition of balanced.
{-@ type BTree a = { t: Tree a | balanced t } @-}

Every time we specify a tree as a BTree, LH automatically enforces the corre-
sponding balance restriction on the structure. For example, if we try to construct
a tree with three consecutive nodes on the left, then LH produces a type error,
indicating that t does not satisfy the definition of a BTree, i.e., Node 1 (Node 2
(Node 3 Nil Nil) Nil) Nil.

3.1 Logarithmic Properties
Once we have established our structure to refer to balanced trees, we want to
prove some standard properties about them using LH, in particular those con-
cerning the relationship between the height of a tree and its number of nodes.

balanced(t) ⇒ h(t) = ⌈log2(nc(t) + 1)⌉ (1)
balanced(t) ⇒ mh(t) = ⌊log2(nc(t) + 1)⌋ (2)

Function nc counts the number of nodes of a given tree (we omit its definition
because it is straightforward).

To prove these properties, we first define the floor and ceiling of the logarithm,
since LH lacks built-in support for logarithmic operations. We compute the floor
of the base-2 logarithm of a number n, log2F n, by counting how many times n
can be divided by 2 until it reaches 0. The ceiling of the logarithm, log2C n, is
then derived from log2F n by incrementing the result by 1 when pow2 (log2F
n) == n.

We start with the proof of property (2). Its main ingredients are the following
auxiliary properties:

balanced(t) ⇒ nc(t) + 1 < 2mh(t)+1 (3)

balanced(t) ⇒ nc(t) ≥ 2mh(t) − 1 (4)

∀n ∈ N, ∀i ∈ N | 2i ≤ n < 2i+1 ⇒ ⌊log2(n)⌋ = i (5)

6 F. de León et al.

{-@ prop_2 :: t : BTree a -> { log2F (nc t + 1) == mh t } @ -}
prop_2 t = log2F (nc t + 1) == mh t ?

((nc t + 1 >= pow2 (mh t) ? prop_4 t) *** QED)
&&&

(nc t + 1 < pow2 (mh t + 1) ? prop_3 t *** QED))
? prop_5 (mh t) (nc t + 1) *** QED

Fig. 1: Proof of property (2).
{-@ prop_1 :: t : BTree a -> { log2C (nc t + 1) == h t } @ -}
prop_1 Nil = ()
prop_1 t | h t == mh t = log2C n == h t ? prop_6 t

=== log2F (nc t + 1) == h t ? prop_2 t
=== mh t == h t *** QED
| h t == mh t + 1 = log2C n == h t ? prop_7 t
=== log2F (nc t + 1) + 1 == h t ? prop_2 t
=== mh t + 1 == h t *** QED

Fig. 2: Proof of property (1).

Given these properties, the proof of (2) is inmediate: By (3) and (4) it follows
that 2mh(t) ≤ nc(t) + 1 < 2mh(t)+1, and by (5) we conclude that ⌊log2(nc(t) +
1)⌋ = mh(t).

Figure 1 shows the proof written in LH. It is worth noticing that, due to
the complexity of the proof, it is impossible to automate it without guiding the
proof through the use of proof combinators up to a point where the SMT-solver
can take over and determine whether the proof is correct.

The proof of property (1) requires more effort due to the definition of log2C,
the ceiling of the logarithm. Since log2C distinguishes cases based on the result of
log2F, one needs to associate the unfolding of the function with another property
in order to work with a concrete result rather than a raw application. To achieve
this, we state two other properties that relate a tree’s height with its number of
nodes.

balanced(t) ∧mh(t) = h(t) ⇒ 2⌊log2(nc(t)+1)⌋ = nc(t) + 1 (6)

balanced(t) ∧mh(t) + 1 = h(t) ⇒ 2⌊log2(nc(t)+1)⌋ < nc(t) + 1 (7)

Using these properties, we can perform case analysis in the proof of (1) replacing
the function call to log2C by the corresponding case. Once this replacement is
performed, we are able to reach the desired result. The complete proof in LH can
be found in Figure 2.

4 Braun Trees

Fig. 3: Braun Tree.

Braun trees [3,9] are binary trees that support effi-
cient element access by natural number index. Each
node implicitly corresponds to a position determined
by the path taken from the root. To access the ele-
ment at position i, one considers the binary represen-
tation of i. Starting from the least significant bit, a

bit value of 0 indicates that the left child should be followed, while a bit value
of 1 indicates the right child. This process continues until the most significant
bit is reached, at which point the desired element is found.

Verifying the Functional Correctness of Braun Trees with LiquidHaskell 7

Due to their structure, Braun trees provide an efficient representation of
functional arrays, supporting logarithmic-time access and updates. Additionally,
their balanced nature allows them to grow or shrink with minimal cost. The key
structural invariant of Braun trees states that, at every node, the left subtree is
always either equal in size to the right subtree or larger by exactly one element.
This invariant guarantees that the tree remains balanced, maintaining a depth
of O(log2 n).

We define Braun trees by extending the tree structure of the previous section
with the structural invariant.
{-@ type Braun a = { t : Tree a | braun t } @ -}
type Braun a = Tree a

{-@ reflect braun @-}
{-@ braun :: Tree a -> Bool @-}
braun (Node _ l r) = (nc l == nc r || nc l == nc r + 1) &&

braun l && braun r
braun Nil = True

Element access is based on the binary representation of the index. To access a
node whose binary index ends in a 1, the structure must already contain the node
where that bit is 0. This ensures that the path exists in the tree. As a result, the
left subtree always contains the same number of elements as the right subtree, or
at most one more. Under this scheme, the index 0 is problematic since its binary
representation consists entirely of zeros, and does not yield a valid path to the
root. For this reason, our implementation adopts 1 as the minimum index.

An interesting property states that Braun trees are balanced trees.

braun(t) ⇒ balanced(t)

The proof is by induction on the structure of Braun trees. The Nil case is
immediate. For the inductive case, we establish the following auxiliary property
that relates the balanced predicate with the absolute value of the difference in
the number of nodes between the immediate subtrees of a non-empty tree.

balanced(l) ∧ balanced(r) ∧ |nc(l)− nc(r) | ≤ 1 ⇒ balanced(Node x l r) (8)

The proof of (8) proceeds by case analysis over whether the subtree node counts
are exact powers of two, and whether the maximum and minimum heights of the
resulting tree Node x l r are derived from the left or right subtree. In each case,
the goal is to show that the difference between the maximum and the minimum
height of the tree is at most one. The proof uses properties (3) and (4) to convert
the structural properties of the subtrees into logarithmic expressions. The final
step in each branch applies the fact that the difference between the ceiling and
floor of a logarithm (or between two such expressions from similar-sized subtrees)
is at most one.

Using (8) it becomes straightforward to relate braun trees to balanced trees.
The complete proof in LH can be found in Figure 4.

Directly from the structural property, it is possible to prove that in a Braun
tree nc t satisfies the following inequalities:

braun(t) ⇒ 2h(t)−1 ≤ nc(t) < 2h(t) (9)

8 F. de León et al.

{-@ braun_is_balanced :: t : Braun a -> { balanced t } @ -}
braun_is_balanced Nil = ()
braun_is_balanced t@(Node v l r) = balanced t

=== (balanced l && balanced r && h t - mh t <= 1)
? braun_is_balanced l

=== (balanced r && h t - mh t <= 1)
? braun_is_balanced r

=== h t - mh t <= 1 ? prop_8 v l r *** QED

Fig. 4: Proof of balance of Braun Trees.

A proof of this property in Why3 is presented by Filliâtre [1]. We were able to
replicate it in LH by means of the following lemmas:
{-@ inv_size :: l : Braun a -> r : {Braun a | nc r <= nc l}

-> {h l >= h r}

type BraunGE a N = { t : Braun a | nc t >= N }

inv_height1 :: t:BraunGE a 1 -> {pow2 (h t - 1) <= nc t}
inv_height2 :: t:BraunGE a 1 -> {pow2 h t > nc t} @-}

Both inv_height lemmas establish the lower and upper bound on the nc
function, respectively, while inv_size helps decide on the unfolding of the h t
function. Compared to Why3, LH struggles more with reasoning about inequal-
ities involving pow2 and nc. We have to guide the proof manually until reaching
a point where an inductive step can be applied, allowing LH to complete the
verification; something that Why3 is often able to handle automatically.

4.1 Arrays

Having defined Braun trees, we now turn to using them as a foundation for im-
plementing functional arrays. Our development on functional arrays is motivated
by the one presented by Nipkow and Sewell [7].
{-@ type Array a = Braun a @-}
type Array a = Braun a

Associated with this structure, we define the following operations on arrays:
lookup, update, adds, len, and list. As we develop these functions, it is desir-
able to establish their key correctness properties. LH facilitates this process by
allowing us to specify and verify invariants relative to these functions.

For instance, using the refinement type ArrayGE a n, which represents an
array with at least n elements, we can restrict the lookup function to ensure that
the index we are looking for is always present in the array:
{-@ type ArrayGE a N = BraunGE a N @ -}
{-@ lookup :: { n: Nat | n > 0 } -> ArrayGE a n -> a @-}
lookup 1 t@(Node v _ _) = v
lookup n t@(Node v l r) | even n = lookup (div n 2) l

| otherwise = lookup (div n 2) r

However, when attempting to prove the correctness of this definition, a chal-
lenge arises: LH cannot automatically infer that if the index is not even, then nc
r >= div n 2, even when the overall condition nc (Node v l r) >= n holds. This
limitation stems from the definition of Braun trees, which enforces a left-heavy

Verifying the Functional Correctness of Braun Trees with LiquidHaskell 9

balance. Although this invariant guarantees that the right subtree is populated
when needed, LH is not able to deduce this implicitly. To assist the SMT-solver
in reasoning about parity and branching, we explicitly promote the even function
into the refinement logic.
{-@ reflect even @-}
even i = i ‘mod ‘ 2 == 0

By combining this reflection with PLE, we allow LH to reason about parity,
enabling it to correctly deduce the shape and size of subtrees during recursive
calls. PLE is a key part of this proof since the solver needs the unfolding to
correctly resolve the invariants.

This promotion will be the basis for all subsequent operations, as they rely
on similar structural reasoning.

The update function either modifies an existing element or extends the array
by one element, with the following refinement type:
{-@ type ArrayNON1 a N I
= {arr : Array a | (I <= N => nc arr == N) &&

(I == N+1 => nc arr == N+1)} @-}

{-@ update :: {n:Nat | n>0} -> a -> arr:ArrayGE a {n-1}
-> ArrayNON1 a {nc arr} {n} @-}

update :: Int -> a -> Array a -> Array a

Again we make sure that the element we want to update is in the structure by
using ArrayGE. The return type ArrayNON1 preserves the Braun invariant limiting
the number of nodes to either the same number or increased by exactly one.

The adds operation extends an array by adding the elements of a list xs at
the end. The size of the resulting array is then n + length xs.
{-@ type ArrayN a N = { arr : Array a | nc arr == N } @-}

{-@ reflect adds @-}
{-@ adds :: xs : [a] -> n : Nat -> ArrayN a n

-> ArrayN a { n + length xs } @ -}
adds :: [a] -> Int -> Array a -> Array a

The len operation is straightforward, as it simply returns the node count.
{-@ len :: arr : Array a -> {n : Nat | nc arr == n} @-}
len arr = nc arr

Lastly, we would like to be able to transform arrays to lists; for this we define
the function list. This function is governed by the following invariant:
{-@ list :: arr:Array a -> {xs:[a] | nc arr == length xs} @-}
list Nil = []
list (Node x l r) = x : splice (list l) (list r)

{-@ reflect splice @-}
{-@ splice :: xs:[a] -> ys:[a]

-> zs : {[a] | length zs == length xs + length ys} @-}
splice :: [a] -> [a] -> [a]

The type { xs : [a] | nc arr == length xs } states that the output list
xs contains exactly nc arr elements of type a. In this case the splice function
alternates elements of the lists so the sorting is correct.

10 F. de León et al.

So far it has not been necessary to rely on the theorem-proving capabilities
of LH. However, here we are faced with a difficulty: while we can verify that
the sizes match, the next natural question is whether the order of the elements
in the list corresponds to their traversal order in the tree. To verify this, two
alternatives can be considered. The first one is to enrich the refinement type of
the function by extending the invariant with an explicit notion of element order,
allowing LH to check the alignment between the tree and list positions. The sec-
ond alternative is to shift the problem towards the theorem-proving capabilities,
where we can encode and prove a separate property that establishes the align-
ment. The first alternative corresponds to a correct-by-construction approach,
whereas the second one a more traditional verification approach.

We finally chose the second alternative. We had previously explored the first
one for other functions, but found that it significantly increased both complex-
ity and verbosity of the code. In particular, maintaining the necessary invariants
required adding new components to our structure, as well as implementing aux-
iliary types and helper functions to carry additional information throughout re-
cursive transformations. While this was sometimes partially successful, it made
the codebase more difficult to manage and less modular.

4.2 Functional Correctness of Array Operations

In this section, we validate the invariants proposed in [7] for the array operations
introduced in the previous subsection. The following properties are automatically
valid, essentially because they are encoded as part of the refinement types of the
respective functions:

(IA1) length(list(t)) = nc(t)

(IA2) braun(t) ∧ n ∈ [1, nc(t)] ⇒ nc(update(n, x, t)) = nc(t)

(IA3) braun(t) ∧ n ∈ [1, nc(t)] ⇒ braun(update(n, x, t))

(IA4) braun(t) ⇒ nc(update(nc(t) + 1, x, t)) = nc(t) + 1

(IA5) braun(t) ⇒ braun(update(nc(t) + 1, x, t))

(IA6) braun(t)

⇒ nc(adds(xs, nc(t), t)) = nc(t) + length(xs) ∧ braun(adds(xs, nc(t), t))

Invariant (IA1) is encoded in the refinement type of list. Invariants (IA2)
through (IA5) are proved in the implementation of update, and (IA6) is checked
by adds.

On the other hand, several other invariants require additional guidance for
the SMT-solver to be proved. These are verified using equational reasoning with
proof combinators:

(IA7) braun(t) ∧ i < nc(t) ⇒ list(t) !! i = lookup(i+ 1 t)

(IA8) braun(t) ⇒ list(update(nc(t) + 1, x, t)) = list(t) ++ [x]

(IA9) braun(t) ⇒ list(adds(xs, nc(t), t)) = list(t) ++ xs

(IA10) braun(t) ∧ n ∈ [1, nc(t)] ⇒ list(update(n, x, t)) = list(t)[n− 1 := x]

An expression xs !! i denotes list indexing, while xs[i := x] denotes the list
xs with the i-th element replaced by x (positions in a list start from zero).

Verifying the Functional Correctness of Braun Trees with LiquidHaskell 11

We start with (IA7), which states the alignment that exists between the tree
positions and those at the list that is obtained with the list function.
{-@ ia7 :: arr: Array a -> n: { Nat | n < nc arr }

-> {(list arr) !! n == lookup (n+1) arr} @-}
ia7 :: Eq a => Array a -> Int -> Proof

The idea of the proof is inspired by the one presented by Nipkow and Sewell
[7]. To establish that the list and the tree share the same element order, we
require a way to proceed recursively through the tree while traversing the list
in parallel. Given that the result of the list function is constructed by con-
catenating the root element to the result of the splice operation applied to the
recursive calls of list on the subtrees, we can associate the choice of a branch
in the tree with a corresponding segment of the list based on the parity of the
index n. In this way, the recursive descent into the tree is naturally aligned with
the decomposition of the list.

We then establish the following property; assume length(xs) > 0.
n < length(xs) + length(ys)∧ | length(xs)− length(ys) | ≤ 1

⇒ splice(xs, ys) !!n = (if even(n) then xs else ys) !! (div n 2)

Now we are able to rely on PLE to handle most of the proof. Once we struc-
ture the recursion properly and reach the inductive step, the SMT-solver is able
to finish the proof without any assistance. With this result, we are able to suc-
cessfully synchronize the recursive progress on both the list and tree, enabling
LH to complete the proof inductively.

We now turn to the proof of Invariant (IA8):
{-@ ia8 :: arr:Array a -> x:a

-> {list (update (nc arr + 1) x arr)==list arr ++[x]} @-}
ia8 :: Eq a => Array a -> Int -> Proof

To prove this property, we must perform a case analysis based on the parity
of nc arr + 1, as this determines the path taken by the update function. In case
nc arr + 1 is even, we can immediately apply the inductive hypothesis, reducing
the recursive call to a list. This leads us to the following intermediate equality:

splice(list(l) ++ [x], list(r)) = splice(list(l), list(r)) ++ [x]

Similarly, in case nc t + 1 is odd, we must prove the following:
splice(list(l), list(r) ++ [x]) = splice(list(l), list(r)) ++ [x]

In both cases, we establish the result by proving the respective equalities as
separate lemmas. Each lemma calls the other after one step of unfolding, thereby
completing the proof by mutual induction. Once these lemmas are verified, the
overall property is established.

Invariant (IA9) ensures that adds behaves like standard list append:
{-@ ia9 :: arr:Array a -> xs:[a]

-> {list (adds xs (nc arr) arr)==list arr ++ xs} @ -}
ia9 :: Eq a => Array a -> Int -> Proof

The main challenge is the recursive nature of adds, which iterates over the
input list until reaching the empty list. To proceed, we invoke the inductive
hypothesis to replace each recursive call to adds with a call to update. We then

12 F. de León et al.

can leverage the property previously proven for update, thereby eliminating it in
favor of list operations. At that point, the goal reduces to proving the following
standard properties of list concatenation: xs ++ [] = xs which is trivial and
list(t) ++ [x] ++ xs = list(t) ++ (x : xs). Once these auxiliary lemmas are
established, LH is able to complete the proof automatically.

The last property we verify is (IA10), which reduces to proving the following:
{-@ ia10 :: v:a -> n:{Nat | n >= 1} -> arr:ArrayGE a n

-> {list (update n v arr)== change (n-1) v (list arr)} @-}
ia10 :: Eq a => a -> Int -> Array a -> Proof

In the proof of this property, it is possible to quickly apply the inductive step
and eliminate the update operation from the reasoning. The main difficulty stems
from the fact that, regardless of the parity of the updated index, the recursive
descent in the tree always yields an even index until the base case is reached
at 1 or 2. To effectively complete the proof, one needs to establish additional
properties about list updates, particularly how updates propagate through the
splice operation.

n ≥ 2 ∧ n ≤ len(xs) + len(ys) + 1 ∧ even(n)

⇒ splice(xs[div n 2− 1 := v], ys) = splice(xs, ys)[n− 2 := v]

n ≥ 2 ∧ n ≤ len(xs) + len(ys) ∧ even(n)

⇒ splice(xs, ys[div n 2− 1 := v]) = splice(xs, ys)[n− 1 := v]

n ≥ 2 ∧ n ≤ len(xs) + len(ys) ∧ ¬even(n)
⇒ splice(xs, ys[div n 2− 1 := v]) = splice(xs, ys)[n− 1 := v]

Each of these properties use the other to prove that the induction is done
correctly. With these auxiliary properties we are able to reason about the list
structure sufficiently for the SMT-solver to verify the desired property.
4.3 Flexible Arrays

Flexible arrays are data structures that support dynamic growth and shrinkage
at both ends, allowing elements to be efficiently added or removed from either the
front or the back. We extend our array structure with four operations: add_lo,
add_hi, del_lo, and del_hi. These functions provide the necessary functionality
to manipulate the array from both ends while preserving its structural invariants.

Appending an element to the end of the array is already supported by update.
Thus, implementing add_hi amounts to calling update with the current size of
the array to append the new element.

The add_lo function, which inserts an element at the beginning, requires
rebalancing the tree to preserve the Braun invariant. This is done by recursively
inserting the existing root into the right subtree and swapping the branches:
{-@ add_lo :: x:a -> arr:Array a -> ArrayN a {nc arr + 1} @-}
add_lo x Nil = Node x Nil Nil
add_lo x (Node v l r) = Node x (add_lo v r) l

Since the Array type guarantees the Braun property, the required invariants are
enforced by construction.

To implement del_lo, which removes the first element (i.e., the root), we
merge the left and right subtrees. The merge function must reverse the effect of
add_lo to maintain structural integrity:

Verifying the Functional Correctness of Braun Trees with LiquidHaskell 13

{-@ del_lo :: arr : Array a
-> {res:Array a | nc arr > 0 => nc res == nc arr -1} @-}

del_lo Nil = Nil
del_lo (Node _ l r) = merge l r

{-@ reflect merge @-}
{-@ merge :: arr1 : Array a

-> { arr2 : Array a | nc arr2 == nc arr1 ||
nc arr1 == nc arr2 + 1 }

-> ArrayN a { nc arr1 + nc arr2 } @-}
merge :: Array a -> Array a -> Array a

Finally, the del_hi operation removes the last element by navigating to it
and replacing it with Nil. The type signature ensures that the resulting tree has
exactly one fewer node than the input:
{-@ del_hi :: n : Nat -> ArrayN a n

-> { a : Array a | n > 0 => nc a == n-1 } @-}
del_hi _ Nil = Nil
del_hi n (Node v l r)

| n == 1 = Nil
| not (even n) = Node v l (del_hi (div n 2) r)
| otherwise = Node v (del_hi (div n 2) l) r

It is important to note that both add_hi and del_hi currently run in time
O(nc(t) + log2(nc(t))), rather than the desired O(log2(nc(t))). Achieving loga-
rithmic complexity would require extending the tree structure with an additional
parameter that explicitly stores the nc value at each node.
4.4 Functional Correctness of Flexible Array Operations

Following [7], we validate the following invariants for flexible arrays.

(IF1) nc(add_lo(x, t)) = nc(t) + 1 (IF5) braun(Node x l r) ⇒ braun(merge(l, r))
(IF2) nc(t) > 0 (IF6) braun(t) ⇒ braun(del_hi(nc(t), t))

⇒ nc(del_lo(t)) = nc(t)− 1
(IF3) nc(t) > 0 (IF7) braun(t) ⇒ braun(add_lo(x, t))

⇒ nc(del_hi(nc(t), t)) = nc(t)− 1
(IF4) nc(add_hi(x, t)) = nc(t) + 1 (IF8) braun(t) ⇒ braun(del_lo(t))

Invariants (IF1) through (IF3) are encoded in the output types of the functions.
Similarly, invariants (IF5) through (IF8) are verified by setting the result type
to Array, ensuring that the output satisfies, by construction, the structural re-
quirements of a Braun tree. Invariant (IF4) is established by using the ArrayNON1
type in the output of the update function.

Even though some properties could be directly verified through function def-
initions and refinement types, other invariants require more powerful reasoning.
This is the case of the following invariants, which require the application of
theorem-proving features:

(IF9) braun(t) ⇒ list(add_lo(a, t)) = a : list(t)

(IF10) braun(Node x l r) ⇒ list(merge(l, r)) = splice(list(l), list(r))

(IF11) braun(t) ∧ nc(t) > 0 ⇒ list(del_lo(t)) = tail(list(t))

(IF12) braun(t) ∧ nc(t) > 0 ⇒ list(del_hi(nc(t), t)) = init(list(t))

14 F. de León et al.

where tail and init are the Haskell functions that return all the elements of a
non-empty list except for the first one and last one, respectively.

For (IF9), we prove that inserting an element at the beginning of an array
corresponds to prepending that element to the list representation.
{-@ if9 :: x: a -> arr: Array a

-> { x : list (add_lo x arr) == list arr } @-}
if9 :: Eq a => a -> Array a -> Proof

In this case, unfolding add_lo and reaching its inductive step is sufficient for
LH to automatically complete the proof without additional guidance.

Property (IF10) associates the merging of trees with the splice operation:
{-@ if10 :: arr1 : Array a

-> arr2:{Array a | nc arr2 == nc arr1 ||
nc arr1 == nc arr2 + 1 }

-> { splice (list arr1)(list arr2)
== list (merge arr1 arr2) } @ -}

if10 :: Eq a => Array a -> Array a -> Proof

In this case, LH is able to solve the proof automatically.
Property (IF11) states that converting the result of del_lo to a list yields

the same result as taking the tail of the list obtained from the original array:
{-@ if11 :: arr : Array a

-> {tail (list arr) == list (del_lo arr)} @-}
if11 :: Eq a => Array a -> Proof

Here we encounter a challenge: on one side we are doing recursion on a list,
and on the other side, on a tree that is being merged. The proof relies on (IF10).

Finally, (IF12) states that removing the last element from a Braun tree cor-
responds to dropping the last element from its list representation.
{-@ if12 :: arr: { Array a | nc arr > 0 }

-> {init (list arr) == list (del_hi (nc arr) arr)} @-}
if12 :: Eq a => Array a -> Proof

The proof again relies on reasoning about the splice operation. In the in-
ductive step, after unfolding del_hi, the proof splits into two cases based on the
parity of the node count of the tree. Although we can successfully reduce the
operation, this is not enough for LH to complete the proof. It is necessary to
establish the following two properties, which, based on the parity of the sum of
the list lengths, state that the application of init to a splice can be reduced to
its application to one of its argument lists:

even(len(xs) + len(ys)) ⇒ init(splice(xs, ys)) = splice(xs, init(ys))

¬ even(len(xs) + len(ys)) ⇒ init(splice(xs, ys)) = splice(init(xs), ys)

5 Related work

Previous work has explored the formal verification of Braun trees and other
balanced data structures in various proof assistants. However, to our knowledge,
this is the first formal verification of Braun trees using LH. Nipkow and Sewell [7]
provide a comprehensive Isabelle/HOL development, including correctness and
complexity proofs for Braun tree operations. Their work inspired our LH formal-
ization, although we restrict our focus to the structural invariants and functional

Verifying the Functional Correctness of Braun Trees with LiquidHaskell 15

correctness of the array operations. From an implementation point of view, the
main difference with the development in Isabelle is LH’s ability to embed proofs
directly within function definitions, rather than requiring all properties to be
proved separately as theorems. In fact, a relevant feature of LH is the possibil-
ity to write proofs in the same language as the final programs. This provides a
significant safety benefit: any modification to the code can be rechecked auto-
matically, without needing to first prove the logic in a separate proof language.
Furthermore, this integration ensures that all proof-related information remains
within the same codebase and incorporated it to the development process.

Filliâtre [1] implemented a variant of Braun trees to model heaps in Why3,
proving their correctness with respect to a priority queue specification. Although
Why3 and LH differ in underlying logic and methodology, both aim to express
structural invariants through annotations. Compared to Filliâtre’s implementa-
tion, the inv_height property required only 14 lines of Why3 code and almost
no proof guidance. In contrast, our LH proof of the same property spanned 34
lines, most of which were dedicated to guiding the system towards the correct
reasoning. On the other hand, cases like fast_size, an operation introduced by
Okasaki [8] and formally verified by Filliâtre. (not included in this paper due
to lack of space), required us only the introduction of a simple invariant at the
logic level (which is automatically verified by LH). This allowed us to obtain
results very similar to those of Why3, with minimal additional effort. In addi-
tion to the prior implementation Filliâtre [2] also presented a Flexible Array
implementation in this case very similar to ours.

Unlike other approaches that only check properties externally, our implemen-
tation encodes many function invariants, and the pre- and post-conditions that
preserve them, directly at the refinement type level. As a result, functions like
lookup and update cannot be called with an invalid index, nor can any operation
be applied to a tree that does not satisfy the Braun tree invariant.

Okasaki [8] and Nipkow and Sewell [7] have also explored alternative defini-
tions of some of the array operations in order to improve their performance. Our
formalization includes the implementation of these efficient operations, but we
do not include them here due to lack of space. They can be found in our online
repository (https://gitlab.fing.edu.uy/felipe.de.leon/brauntrees).

In the LH ecosystem, Vazou et al. [14] demonstrated the use of LH to ver-
ify properties of red-black trees. Their work validates that refinement types
can express and enforce non-trivial invariants such as balancedness. Although
they demonstrate such properties, the version of LH they used lacked both the
reflect directive and the proof combinators that our solution takes advantage
of to a large extent.

Other efforts have been made to formalize related data structures in LH.
Rondo [10], for example, presented an implementation of AVL trees purely using
measures. We experimented with this approach during our development, and
while it yielded good results in some cases, it often required substantial auxiliary
code and structures. In comparison, a hybrid approach, leveraging both measures

https://gitlab.fing.edu.uy/felipe.de.leon/brauntrees

16 F. de León et al.

and reflected functions, has provided significantly better results by combining
the strengths of both techniques.

Finally, while most work involving LH focuses on theoretical developments
or isolated examples, our contribution takes a more practical approach by using
the tool to replicate and validate existing proofs in a use case that is simple
enough to be accessible, yet rich enough to be non-trivial.

6 Conclusions and Future Work

During the course of this work, we experimented in a non-trivial use case with
the different capabilities offered by LH to formalize and verify program invari-
ants. LH directives proved to be particularly useful for automatically verifying
structural properties, such as those related to balanced trees and the Braun
condition. In some cases, the proofs were remarkably straightforward, with the
solver handling constraint enforcement automatically. A striking case is, for ex-
ample, the one where the simply promotion of a single function like even enabled
the solver to reason effectively about parity.

However, in other cases, particularly those involving non-trivial mathemati-
cal properties such as logarithmic bounds, considerable development effort was
required to assist the solver in reasoning through the proof. This also marks
a significant shift in the programming paradigm, as developers must adopt the
mindset of a theorem prover, along with the associated learning curve that comes
with understanding and effectively using these formal verification tools.

With respect to LH’s reasoning capabilities, we initially aimed to heavily
rely on its PLE feature to automate much of the verification effort. While this
was effective for simple local properties, we found it insufficient for more com-
plex proofs that lacked straightforward recursion patterns suitable for unfolding.
Nonetheless, PLE remained a valuable tool, even if its applicability was more
limited than we had originally expected.

In summary, LH proved to be a flexible and powerful tool for formal program
verification. While it is less expressive than full proof assistants, its seamless
integration with Haskell enables verification to become a natural part of the
development workflow.

We envision two main directions for future work. The first involves to fur-
ther continue with the formalization of operations on Braun trees. In particular,
we have already begun the formalization of some of the efficient operations on
Braun trees presented by Okasaki [8]. Another interesting structure to analyze
is the Braun-tree-based implementation of priority queues, following the works
of Nipkow and Sewell [7] and Filliâtre [1].

The second direction focuses on reworking the definition of functions and
proofs using an intrinsically-typed definition of Braun trees, where the struc-
tural invariant is encoded as part of the data type definition (and not as an
external predicate). We have already experimented with this technique in our
LH implementation of AVL trees [6,5].

Verifying the Functional Correctness of Braun Trees with LiquidHaskell 17

References

1. Filliâtre, J.C.: Purely applicative heaps implemented with braun trees. https:
//toccata.gitlabpages.inria.fr/toccata/gallery/braun_trees.en.html
(2015), formal proof development in Why3

2. Filliâtre, J.C.: Flexible arrays implemented with braun trees. Toccata
(Why3 project gallery) (nd), https://toccata.gitlabpages.inria.fr/toccata/
gallery/flexible_arrays.en.html

3. Hoogerwoord, R.R.: A logarithmic implementation of flexible arrays. In: Bird, R.S.,
Morgan, C., Woodcock, J. (eds.) Mathematics of Program Construction, Second
International Conference, Oxford, U.K., June 29 - July 3, 1992, Proceedings. Lec-
ture Notes in Computer Science, vol. 669, pp. 191–207. Springer (1992)

4. Jhala, R.: Writing Specifications liquidhaskell docs. https://ucsd-progsys.
github.io/liquidhaskell/specifications/ (2020), accessed: 2024-05-15

5. de León Arias, F.: Estudio del lenguaje LiquidHaskell. Final degree project, Fac-
ultad de Ingeniería, Universidad de la República (Uruguay) (2024), available at
https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/47485

6. de León Arias, F.: Implementation of AVL Trees in LiquidHaskell (2024),
https://gitlab.fing.edu.uy/felipe.de.leon/liquid-structures/-/blob/
main/src/AVLTrees.hs

7. Nipkow, T., Sewell, T.: Proof pearl: Braun trees. In: Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs. p. 18–31.
CPP 2020, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3372885.3373834

8. Okasaki, C.: Three algorithms on braun trees. J. Funct. Program. 7(6), 661–666
(Nov 1997). https://doi.org/10.1017/S0956796897002876

9. Paulson, L.C.: ML for the Working Programmer. Cambridge University Press,
Cambridge, 2 edn. (1996)

10. Rondon, P., Vazou, N.: Programming with refinement types: Liquidhaskell tuto-
rial. https://ucsd-progsys.github.io/liquidhaskell-tutorial/book.pdf, ac-
cessed: May 24, 2025

11. Vazou, N., Breitner, J., Kunkel, R., Van Horn, D., Hutton, G.: Theorem proving
for all: equational reasoning in liquid haskell (functional pearl). In: Proceedings
of the 11th ACM SIGPLAN International Symposium on Haskell. p. 132–144.
Haskell 2018, Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3242744.3242756

12. Vazou, N., Breitner, J., Kunkel, W., Horn, D.V., Hutton, G.: Reasoning
about programs. https://goto.ucsd.edu/~nvazou/theorem-proving-for-all/
02-Reasoning-About-Programs.html (2013), accessed: 2024-05-15

13. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M.,
Gardner, P. (eds.) Programming Languages and Systems. pp. 209–228. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

14. Vazou, N., Seidel, E., Jhala, R.: Liquidhaskell: Experience with refinement types
in the real world. In: Proceedings of the 2014 ACM SIGPLAN Symposium on
Haskell. pp. 39–51. Haskell ’14, Association for Computing Machinery, New York,
NY, USA (2014). https://doi.org/10.1145/2633357.2633366

https://toccata.gitlabpages.inria.fr/toccata/gallery/braun_trees.en.html
https://toccata.gitlabpages.inria.fr/toccata/gallery/braun_trees.en.html
https://toccata.gitlabpages.inria.fr/toccata/gallery/flexible_arrays.en.html
https://toccata.gitlabpages.inria.fr/toccata/gallery/flexible_arrays.en.html
https://ucsd-progsys.github.io/liquidhaskell/specifications/
https://ucsd-progsys.github.io/liquidhaskell/specifications/
https://gitlab.fing.edu.uy/felipe.de.leon/liquid-structures/-/blob/main/src/AVLTrees.hs
https://gitlab.fing.edu.uy/felipe.de.leon/liquid-structures/-/blob/main/src/AVLTrees.hs
https://doi.org/10.1145/3372885.3373834
https://doi.org/10.1145/3372885.3373834
https://doi.org/10.1017/S0956796897002876
https://doi.org/10.1017/S0956796897002876
https://ucsd-progsys.github.io/liquidhaskell-tutorial/book.pdf
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3242744.3242756
https://goto.ucsd.edu/~nvazou/theorem-proving-for-all/02-Reasoning-About-Programs.html
https://goto.ucsd.edu/~nvazou/theorem-proving-for-all/02-Reasoning-About-Programs.html
https://doi.org/10.1145/2633357.2633366
https://doi.org/10.1145/2633357.2633366

	Verifying the Functional Correctness of Braun Trees with LiquidHaskell

